ГДЗ по геометрии 7 класс В. Ф. Бутузов, И. И. Юдина, Л. С. Атанасян, С. Б. Кадомцев, Э. Г. Позняк упражнение - 597 стр. 158

Условие
Катеты прямоугольного треугольника равны a и b. Выразите через а и b гипотенузу и тангенсы острых углов треугольника и найдите их значения при а = 12, b = 15.
Решение #1

а) Пусть прямоугольный треугольник обозначен ABC, где угол C — прямой угол. Катеты AC = a и BC = b.

По теореме Пифагора:

AB = √(a² + b²)

Тангенс угла A (tg A):

tg A = BC/AC = b/a

Тангенс угла B (tg B):

tg B = AC/BC = a/b

б) Гипотенуза (AB):

AB = √(12² + 15²) = √(144 + 225) = √369 = 3√41 ≈ 19

Тангенс угла A (tg A):

tg A = 15/12, значит угол A ≈ 51°21

Тангенс угла B (tg B):

tg B = 12/15, значит угол B ≈ 38°39

Сообщить об ошибке
Сообщитe об ошибке